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ABSTRACT

Elaiolide (2)

The 16-membered macrodiolide elaiolide (2) has been prepared in 20 steps from the ketone (S)-8 in 9.3% overall yield with a diastereoselectivity
of 76%. Key steps included the copper(l) thiophene-2-carboxylate promoted cyclodimerization of the vinyl stannane 3 to give the C,-symmetric
macrocycle 16 in 80% yield and the two-directional aldol coupling of the macrocyclic diketone 17 with aldehyde 5. Most of the stereocenters
in the macrocyclic precursor 3 were constructed using boron aldol methodology developed in this laboratory.

Elaiophylin (1), first isolated from cultures ddtreptomyces
melanosporusdy Arcamoneet al'? and shortly thereafter
from a related microorganism by Ar#ijs a 16-membered
macrolide which displays antimicrobial activity against
several strains of Gram-positive bactéfig. Elaiophylin also
has anthelmintic activity againgtichonomonagaginalis?
as well as inhibitory activity against'dependent adenosine
triphosphatase¥. The C,-symmetric macrodiolide structure
was determined by chemical degradatiof and spectro-
scopic method&! with the full absolute configuration being
elucidated by X-ray crystallographic analy&i$Elaiophylin

belongs to a family of structurally related compounds, all
having similar stereochemistry in the secoacid moiety. These

(1) (@) Arcamone, F. M.; Bertazzoli, C.; Ghione, M.; Scotti, T. G.
Microbiol. 1959 7, 207. (b) Azalomycin B, as reported by Arai, is identical
with elaiophylin: Arai, M.J. Antibiot., Ser. AL960,13, 46, 51.

(2) (@) Hammann, P.; Kretzschmar, Getrahedron1990,46, 5603. (b)
Hammann, P.; Kretzschmar, G.; Seibert JGAntibiot.1990,43, 1431. (c)
Liu, C.-M.; Jensen, L.; Westley, J. W.; Siegel, D. Antibiot. 1993, 46,
350. (d) Drose, S.; Bindseil, K. U.; Bowman, E. J.; Siebers, A.; Zeek, A,;
Altendorf, K. Biochemistry1993,32, 3902.

(3) (a) Takahashi, S.; Arai, M.; Ohki, Ehem. Pharm. Bull1967,15,
1651. (b) Takahashi, S.; Kurabayashi, M.; Ohki, Ghem. Pharm. Bull.
1967,15, 1657. (c) Takahashi, S.; Ohki, Ehem. Pharm. Bull1967,15,
1726. (d) Kaiser, H.; Keller-Schierlein, WWelv. Chim. Actal981, 64, 407.
(e) Neupert-Laves, K.; Dobler, Mielv. Chim. Actal982 65, 262. (f) Ley,

S. V.; Neuhaus, D.; Williams, D. Jetrahedron Lett1982,23, 1207.
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include several other 16- and 18-membered monomeric
macrolides, in particular the bafilomycins and concanamy-
cins? The elaiophylin aglycon elaiolid) has been obtained
through acidic deglycosylation df>

R«]Ou,,
13

Elaiophylin (1) Ry = 2-deoxy-o-L-fucose, Ry = H
Elaiolide (2) Ry=Ro=H

Previous synthetic effortslirected toward elaiophylinij
have constructed the macrodiolide core by a conventional
esterification/lactonization strategy. This has generally been
followed by a double aldol coupling between a macrocyclic
dialdehyde and an ethyl ketone to form the—C,o bond,
which was employed in the total synthesis by Kinoslsita
al.%2% |n the same manner, various aglycon derivafives

(4) Omura, S. IrMacrolide Antibiotics: Chemistry, Biology and Practjce
Omura, S., Ed.; Academic Press: New York, 1984; pp-5846.
(5) Bindseil, K. U.; Zeeck, AJ. Org. Chem1993,58, 5487.
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have been synthesized, including a derivative originally _

obtained from the acidic methanolysis of elaiophyHhA.

Recently, an elegant synthesis of elaioli@¢ Was reported Scheme 2
by Evans and FitcB} in which a high level of diastereo- R (ChXI)E%(BOCI,Ohﬂ%EtN,
selectivity was achieved in thes€Cyq aldol coupling step OBz e $ OBz
described previously. As part of our studies in macrolide g MeCHO, -78 — -20 °C; OH O
synthesig, we devised an alternative strategy to synthesize g g & _ e Ho0,, pH 7 Buffer 9, R = Me (95%, 597% ds)
elaiolide (2) which did not rely on a conventional macro- (5)-10, R = Et 11, R = Et (95%, >97% ds)
lactonization step to construct the 16-membered ring.

We envisagetia novel cyclodimerization process, involv- R 1) PMB-TCA, TfOHcat, EO or
ing a Stille cross-coupling reaction of vinylstanna®eto y H DEIPSCI, Im, DMF _
form the G—C,4/Cs-Cs bonds while simultaneously con- PO O g; “2%”4’&":8:&%’0& MeOH
structing the macrocyclic core (Scheme 1). A double aldol ®

. ’ 7, R=Me, P = PMB (84%)
coupling between the macrocyclic methyl ketofieand 5, R = Et, P = DEIPS (86%)

aldehyde5 would then be required to form the;£-Ci4f
C12—Ciz bonds. A further aldol disconnection a$-€Cy in
the monomeric uni8 leads to ethyl ketoné and aldehyde  tion/ester hydrolysis, and finally oxidative cleavage. The
7. We now report a novel synthesis of elaiolide based on aldehydes was prepared from the propy! ketor®-(L®° and
this cyclodimerization strategy, which further demonstrates acetaldehyde in a similar fashion, where thdydroxyl
the use of our chiral ketone methodology for the controlled group in intermediatd1 was protected as a diethylisoprop-
introduction of key stereocenters. ylsilyl (DEIPSY® ether, in 86% overall yield.

Using our standard conditions, a boron-mediastialdol As shown in Scheme 3, thes€C;, fragment 12 of
reaction between the lactate-derived ethyl ketone {8
acetaldehyde proceeded with high diastereoselectivir ¢o ]
ds) to give adduc® in 95% vyield (Scheme 2). Th&hydroxy Scheme 3
ketone9 was then converted into aldehyden 84% yield,

(Chx),BCl, EtsN,

via a three-step sequence of PMB protection, ketone reduc- H{l\/OB” Et,0, 0 °C:

OBn

6 et
(6) (a) Toshima, K.; Tatsuta, K.; Kinoshita, Metrahedron Lett1986, le} 7.-718-520°C; pygd  OH O
27, 4741. (b) Toshima, K.; Tatsuta, K.; Kinoshita, Bull. Chem. Soc. HzO,, pH 7 buffer
Jpn. 1988, 61, 2369. (c) Seebach, D.; Chow, H.-F.; Jackson, R. F. W,; (56 13 (96%, >97% ds}
Lawson, K.; Sutter, M. A.; Thaisrivongs, S.; Zimmermann].JAm. Chem.
S0c.1985,107, 5292. (d) Seebach, D.; Chow, H.-F.; Jackson, R. F. W.;
Sutter, M. A.; Thaisrivongs, S.; ZimmermannLiebigs Ann. Chenil986
1281. (e) Wakamatsu, T.; Nakamura, H.; Nara, E.; BanT&trahedron
Lett. 1986,27, 3895. (f) Wakamatsu, T.; Yamada, S.; Nakamura, H.; Ban,
Y. Heterocyclesl987,25, 43. (g) Formal total synthesis of elaiophylin:
Nakamura, H.; Arata, K.; Wakamatsu, T.; Ban, Y.; Shibasaki,QWiem.
Pharm. Bull.1990,38, 2435. (h) Evans, D. A.; Fitch, D. M. Org. Chem.
1997,62, 454. (i) Ziegler, F. E.; Tung, J. 8. Org. Chem1991,56, 6530.

(7) For reviews on macrolide synthesis, see: (a) Paterson, |.; Mansuri,
M. M. Tetrahedronl 985,41, 3569. (b) Masamune, S.; McCarthy, P. A. In - .
Macrolide Antibiotics: Chemistry, Biology and Practio®®mura, S., Ed.; elaiolide was prepared from the ethyl ketone (S}-&hich

Academic Press: New York, 1984; pp 12798. has been used extensively as a dipropionate building block

- ,(\jf;r']:o;.‘?‘r;ntf’:ﬁgjfggyl_fgtrt;g'g%‘gog'grg‘?”zat'on strategy, see: Paterson, ¢ the expedient synthesis of a range of polypropionate

(9) Paterson, I.; Wallace, D.; Cowden, Synthesi<1998, 639. natural product$! Using our standard conditioda boron-

1) Me,;NBH(OAC)s
MeCN-ACOH, -35 °C

2) 2,2-DMP, PPTS, CH,Cl,

12 (92%, >97% ds)
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mediatedanti aldol reaction between (S)#hd aldehyd&
proceeded with high diastereoselectivityd7% ds) to give
adduct 13 in 96% vyield. This was followed by amnti
reductiod? using tetramethylammonium triacetoxyboro-
hydride, which afforded, after hydroxyl protection, a 92%
yield of acetonidel2 with a similar level of diastereoselec-
tivity. In this way, theanti-synanti-synCs—C,; stereopentad
was efficiently established.

The synthesis of the cyclodimerization subst@8cheme
4) began with the conversion of the benzyl ether functionality

Scheme 4

OBn _ AN

. PMBO O__0
1) Hy, W2 Ra Ni
2) Swern ox. ><

14(80%, £: Z=20:1)
3) CrCh, CHlg

1) CSA, MeOH-H,0 |

2) SngMee, Pd(PPhs)zClz
Li,COs THF, 40 °C

Y = ~8nMe,
OH OH
15 (77%)

PMBO

DMAP, DCC, CH,Cl,

PMBO OH O

2) Basic alumina, or Ti(O"Pr)4
Hexane-Et,0
3 (68-78%, C;: Co=6.5109.6 : 1)

to the €)-alkenyl iodidel4 in 80% overall yield. This was

achieved via a three-step sequence of Raney nickel selective

deprotectiort? Swern oxidatiort# and Takai olefinatiod®
The Takai reaction was performed with GHind CrC} in
THF—dioxane (1:1) and produced a 20:1 ratio Bfto Z
isomers. Acetonide hydrolysis followed by a Pd(0)-catalyzed
iodine—tin exchangé’ using (MgSn), in the presence of
Li,CO;, then gave the desired vinylstanndrign 77% yield.
Esterificatiodt” 8 of diol 15 with (E)-3-iodopropenoic aciéf
using DCC and DMAP in ChkCl, at —20 °C, then provided
an inseparable 1:5 mixtui®of 3 and its G regioisomer?!

(10) (a) Paterson, |.; Goodman, J. M.; Isaka, Tdtrahedron Lett1989
30, 7121. (b) Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.; Lister,
M. A. J. Am. Chem. S0d.994,116, 11287.

(11) Reviews: (a) Cowden, C. J.; PatersorQig. React1997,51, 1.
(b) Paterson, IPure Appl. Chem1992,64, 1821.

(12) Evans, D. A.; Chapman, K. T.; Carreira, E. 81.Am. Chem. Soc.
1988,110, 3560.

(13) Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O.
Tetrahedron1986,42, 3021.

(14) Mancuso, A. J.; Huang, S.-L.; Swern, D.Org. Chem1978,43,
2480.

(15) Takai, K.; Nitta, K.; Utimoto, K.J. Am. Chem. Sod 986, 108,
7408.

(16) (a) Azizian, H.; Eaborn, C.; Pidcock, A. Organomet. Cheni981,
215, 49. (b) Barrett, A. G. M.; Boys, M. L.; Boehm, T. . Org. Chem.
1996, 61, 685. (c) Wulff, W. D.; Peterson, G. A.; Bauta, W. E.; Chan,
K.-S.; Faron, K. L.; Gilbertson, S. R.; Kaesler, R. W.; Yang, D. C.; Murray.
C. K. J. Org. Chem1986,51, 277.

(17) Steric hindrance at the;@osition when @ is protected prevents
direct esterification, and an esterification on the diélis thus required.

(18) (a) Boyce, R. J.; Pattenden, Tetrahedron Lett1996,37, 3501.
(b) Neises, B.; Steglich, WAngew. Chem., Int. Ed. Engl978,17, 522.
(c) Hofle, G.; Steglich, W.; Vorbruggen, HAngew. Chem., Int. Ed. Engl
1978,17, 569.
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Isomerization of this mixture was achieved under mild
conditions using basic alumina or Ti{@)?2 to provide the
desired G regioisomer3 in 78% yield (6.5:1) or 68% yield
(9.6:1) from15, respectively.

In our earlier model stud$a Cu(l)-promoted Stille cross-
coupling® reaction was successfully used to prepare a
truncated version of the macrocyclic core of elaioli@g, (
where the two )-alkenes precluded cyclization to form an
eight-membered ring. The key cyclodimerization reaction
was performed on the vinylstannar® with copper(l)
thiophene-2-carboxylate (CuTC), a new Cu(l) reagent in-
troduced by Allred and Liebeskiftito promote rapid Stille
cross-coupling reactions under mild conditions in the absence
of Pd catalysis. Thus, treatment of a 0.01 M solution of
monomelt3, in N-methylpyrrolidinone with CuTC (10 equiv)
at room temperature for 15 min, produced the required 16-
membered macrocycls as a white crystalline solid in 80%
yield (88% based on the;Qegioisomer), accompanied by
traces of other macrocycles (Scheme 5). The reaction led to

Scheme 5

7
- Z > SnMie,
OH O
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3 (G; : Cq regioisomer, 9.6 : 1)
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16 (80%, 88% based on C,-regiocisomer)

clean formation ofL6 without the isolation of the open-chain
intermediate, suggesting the occurrence of a rapid Cu(l)-
mediated cyclization without competing oligomerization. In
contrast, under more concentrated reaction conditio0s(

M), the monomer3 was converted into a mixture of three
major macrocycles. Here, the desired dirh@mwas obtained

in 42% vyield, along with 34% of the Omacrotrimer and
13% of the G macrotrimer®

(19) (E)-3-lodopropenoic acid was prepared via a modification of a
procedure described by: Zoller, T.; Ugen, Detrahedron Lett1998,39,
6719. See the Supporting Information for details.

(20) Determined by 500 MH2H NMR of the crude reaction mixture.

(21) Under these kinetic conditions, reaction at the-OH was greatly
preferred over that at the presumably more hindergd@H.

(22) Seebach, D.; Hungerbuhler, E.; Naef, R.; Schnurrenberger, P.;
Weidmann, B.; Zliger, MSynthesis1982, 138.

(23) Reviews: (a) Stille, J. KAngew. Chem., Int. Ed. Endl986, 25,
508. (b) Mitchell, T. N.Synthesisl992, 803. (c) Farina, VPure Appl.
Chem.1996,68, 73.

(24) Allred, G. D.; Liebeskind, L. SI. Am. Chem. S04996,118, 2748.

(25) The structures of these macrocycles were confirmed by FAB MS.
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Scheme 6
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A
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o H
17 (56%, P = TES) _
LIHMDS, THF, -78 °C;
B then §
z ) z / / O
DEPSG OH O OP O

0
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Elaiolide 2 (80%})

18 (75%, P = TES)

The macrodiolidel6 was converted into the bis(methyl

(hemiacetal), leading to isolation of elaiolid2)(in 80%

ketone)17 by a three-step sequence of TES protection, PMB yield. The!H NMR data of the product corresponded well
deprotection, and Dess—Martin oxidatféin 56% overall with that of material obtained by acid hydrolysis of elaio-
yield (Scheme 6). The final key step of the synthesis of phylin?® All spectral data{H and*3C NMR, IR, MS, [o]p)
elaiolide required a double aldol coupling between the obtained from the synthetic material were in agreement with

macrocyclic diketond7 and the chiral aldehydg Obtaining

a high level of Felkin—Anh selectivity from the aldehyde
component in this reaction was crucial in order to set up the
13,14-syrrelationship?” The diketonel 7 was enolized with
LIHMDS at —78 °C for 1 h, followed by addition of an
excess of aldehydB. This led to isolation of the desired
adduct18 in 75% vyield along with 15% of a mixture of

reported valueg®h

In summary, a novel total synthesis of elaiolid® pas
been completed using the copper(l)-mediated cyclodimer-
ization, 2x 3 — 16. This route demonstrates the power of
the Liebeskind modification of the Stille cross-coupling
reaction in the synthesis of structurally complex macrocycles.

diastereoisomers. We attribute the good diastereoselectivity “Acknowledgment. We thank the EPSRC (Grant No.

of this two directional extensiorcé. 90% ds for each side)
to matching of Felkir-Anh control from the aldehyde with
the facial bias of the macrocyclic enolate. Finally, global
deprotectio®® using HF-pyridine—THF—HOS" was ac-
companied by concomitant cyclization to form the bis-

(26) (a) Dess, D. B.; Martin, J. . Am. Chem. S0d.991,113, 7277.
(b) Ireland, R. E.; Liu, LJ. Org. Chem1993,58, 2899.

(27) Originally this aldol was attempted using Mukaiyama conditions,
involving treatment of the keton&7 with TMSCI—-EtN and LIHMDS to
form the silyl enol ether and then addition 6fand BF; etherate. These
conditions (Scheidt, K. A.; Tasaka, A.; Bannister, T. D.; Wendt, M. D;
Roush, W. R.Angew. Chem., Int. Edin press) provided a 7:1 ratio in
favor of the desired aldol in model studies, producing hemiacain
deprotection. In contrast, with diketord& only recovered starting ketone
and aldehyde were isolated.
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Supporting Information Available: Text giving experi-
mental procedures and tables and figures giving complete
spectroscopic data for key compounds. This material is
available free of charge via the Internet at http:/pubs.acs.org.

0OL990004C

(28) Using TASF, only 35% of elaiolide was obtained, accompanied by
an eliminated compound which was also formed in the degradation of
elaiophylin: Scheidt, K. A.; Chen, H.; Follows, B. C.; Chemler, S. R.;
Coffey, C. D.; Roush, W. RJ. Org. Chem1998,63, 6436.

(29) (a) Elaiophylin, kindly provided by Professor S. V. Ley, was
degraded according to the procedure described by Ze¢ok.See the
Supporting Information for tabulateiH and13C NMR data for elaiolide
with comparative data previously reported.
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